

What are Supertasters?

- Supertasters are people with a superior sense of taste.
- Supertasters display increased sensitivity for the following tastes: bitter, sour, sweet, salty, umami (savoury indicates the presence of protein).
- Recent evidence suggests that supertasters may also display increased sensitivity for the taste of fat.
- Their anterior tongues have a high density of fungiform pappilae: structures that house taste buds.

- Approximately 35% of women are supertasters, compared with just 15% of men.
- Roughly 50% of the population are average in their sense of taste.
- Approximately 25% of the population are "non-tasters": people with a comparatively poor sense of taste.
- Supertasters' tongues have up to 1000 taste buds per square centimetre; non-tasters have as few as 50 taste buds per square centimetre.

Taste in the general population

- Taste buds appear when a foetus is about seven weeks old and are functioning by the third trimester of pregnancy.
- Sensitivity to taste fades with age. At about age 60, even healthy people begin to experience a modest decline in taste and more dramatic declines in smell.
- Changes can also result from medications, illnesses such as Alzheimer's disease, hormones and environmental factors (e.g. pollution).

WHAT IMPACT DOES HAVING MORE TASTE RECEPTORS HAVE ON BEHAVIOUR?

- Supertasters may be more likely to become professional wine tasters.
- In comparison, non-tasters may not be able to tell the difference between cheap plonk and fine wines.
- Recent evidence suggests that, when compared with normal and non-tasters, supertasters consume less alcohol, eat less fatty and sugary foods, and have a lower BMI.

- Does having more taste buds mean you are better at detecting small concentrations of flavour (better detectability)?
- Does having more taste buds mean someone is better able to distinguish between flavours (better discriminability)?
- Are taste buds the only receptors involved in the perception of flavour? (what about our sense of smell

 airborne molecules released from food stimulating olfactory receptors).
- What about neural processing beyond the taste buds?

How would you measure whether someone was a supertaster?

oGroup discussion!

- Think of three ways in which you would measure tasting ability in a "participant".
- How feasible is each method (i.e. cost, duration, impact on participant)?
- Which would be the ideal method (i.e. validity, reliability)?
- Which one would be the easiest to implement in a large study (i.e. ~30 people to test in one sitting)

- We could place small amounts of a bitter chemical on your tongue and measure the amount of chemical required to detect it.
- The less amount of chemical you need to detect the bitterness, the more sensitive you would be.
- That is a sound approach but could take us some time to do.

HOW CAN WE MEASURE WHETHER YOU ARE A SUPER-TASTER?

• Another strategy would be to count the number of taste buds on your tongue and assume that number is a good measure of your sensitivity to chemicals. It is quicker but an indirect method of measuring whether you are a super-taster.

HOW CAN WE MEASURE WHETHER YOU ARE A SUPER-TASTER?

- We are going to use some blue food colouring as a stain to count your papillae.
- Your tongue will take up the dye, but the papillae will stay pink.
- We will do this in pairs and measure each others' papillae. Don't put blue colouring on your tongue if think you might have an allergy to it!

TIME TO COUNT YOUR PAPILLAE...

- Place a paper reinforcement ring (about 7mm in diameter) onto the tip of your partner's tongue.
- Using a cotton bud, swab some of the food colouring inside the ring. BE CAREFUL NOT TO SPILL THE DYE ON YOUR CLOTHES OR SKIN!
- Using your Phone (or you can move yourself closer to the window for better light), count how many pink dots are inside the hole.
- Fewer than 15 papillae mean your partner is an insensitive "non-taster", between 15 and 35 indicates an average "taster" and over 35 papillae then your partner is a "super-taster".
- Record your data on the computer

Group discussion

- How accurate do you think our method of counting is?
- What would happen if we counted the taste buds again?
 - i.e. Do you think these findings are reproducible (think about the validity and reliability of our methodology)?
- What would happen if we measured on a different part of the tongue?

Taste test!

• Two supertasters and two "non-tasters" come to the front and test out your skills!

MOVIE BREAK!

o <u>http://www.youtube.com/watch?</u> v=Hd_mxyMAJJY

o 6 mins - 9.11

Is your perception of flavour affected by your sense of smell?

o Come on back, supertasters and non-tasters!

• Let's investigate further...

Is your perception of flavour affected by your sense of smell?

• How does your sense of flavour change when you have a cold?

• Why might the brain combine sensations about smell and taste?

Interesting facts

- Poisonous plants or berries tend to taste bitter, so super-tasters may be less likely to consume poisonous or contaminated food.
- However, super-tasters avoid the bitter flavonoids that are found in broccoli, grapefruit, and other foods that reduce our risk of cancer.
- On the other hand, super-tasters also avoid very salty, fatty, and sugary foods so they tend to be thinner, lowering their risk of heart disease.

GENDER DIFFERENCES?

•About two-thirds of super-tasters are female. One theory suggests that super tasting served as a survival mechanism. Why do you think this would be important?

•But most women are NOT super-tasters. Does this refute your argument? If you argue that super-tasting is essential, why aren't all women super-tasters?

•Approximately 1/3 supertasters are male – why do you think this might be important?

• Super recognisers:

- Neural networks we use to process faces (i.e. primarily the fusiform gyrus) are separate from those we use for recognising other objects i.e. cars, animals, etc.
- Tentative estimate (New Scientist): 1 in 50 people
- <u>https://www.youtube.com/watch?</u>
 <u>v=PuPfQ8UZTGQ</u> (stop at 4:45)

There's a spectrum...

• Prosopagnosia (Greek: "prosopon"

- face, "agnosia" = not knowing)
 Disorder of face perception where recognition of faces is impaired but you can still recognise other objects
- The fusiform gyrus is implicated in Prosopagnosia can be acquired or congenital

"I can see faces clearly, but as soon as the person is out of sight they are, for me, literally out of mind. I can recall a hair style, eye color...but the facial features as an organized whole become lost on me...For example, if we met at a crowded party and you said your name was Dave, and if we bumped into each other again...there's a fair chance I might tell you all about the Dave I had just met earlier."
 Taken from Oliver Sacks, "The man who mistook their wife for a hat."

http://www.youtube.com/watch?v=k5bvnXYIQG8

